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ABSTRACT

The stability of axisymmetric tandem mirror plasmas with respect to
interchange, rotational, and ballooning modes is investigated in the paraxial
approximation. The stabilizing effects of finite orbits, energetic fast-
drifting electrons, nearby conducting walls, and line-tying by a cold plasma
halo are incorporated. The FLORA computer code is introduced to perform
calculations of equilibria with finite plasma pressure and to determine linear
stability by integrating a two-dimensional initial-value equation. Numerical
calculations with FLORA support and extend analytical results. Analytical and

numerical stability criteria are obtained.



I. INTRODUCTION

This paper is concerned with the magnetohydrodynamic stability of plasmas
in axisymmetric tandem mirror systems. The tandem mirror configuration is
currently one of the two principal magnetic confinement approaches to

. 1 . .
controlled fusion. The central cells of tandems are axisymmetric and much

longer than the end cells or plugs that typically have quadrupole magnetic

s

’ These end cells are minimum-B

coils to ensure macroscopic stability.
structures whose good magnetic-field-line curvature offsets the bad curvature
originating from elsewhere in the tandem mirror. Unfortunately, the
quadrupole magnetic structure is both deleterious to radial transport,
which would be greatly improved in a completely axisymmetric system, and much
more costly than are axisymmetric configurations. This motivates investigation
of an axisymmetric tandem mirror as a possible confinement system. The
assessment of its viability begins with calculations of equilibria with finite
plasma pressure and an analysis of macroscopic stability as presented here.
These calculations also provide further insight into the equilibrium and
stability of long-thin tandem mirror systems with symmetric central cells in
general.

One of the earliest considerations of the macroscopic stability of
plasmas confined by magnetic fields from the point of view of particle orbits
is the classic paper by Rosenbluth and Longmire.A This paper presented a
physical picture of interchange stability and stated flute-mode stability
criteria for a low-pressure plasma based on energy arguments. Magneto-

hydrodynamic (MHD) stability conditions were derived from the collisionless



Boltzmann equation in a slightly earlier paper.5 Of direct importance to

the study presented here was the development of finite-Larmor-radius (FLR)
theory in Ref. 6. 1In this paper the Vlasov equation was formally expanded in
the limits of small but finite Larmor radius, weak density gradient, low
frequency relative to the cyclotron frequencies, and very low beta (beta is
the ratio of the plasma pressure to the magnetic energy density). Gravity was
used to model magnetic curvature; plasma equilibria and perturbations were
uniform in z. A Gaussian density profile and rigid rotation were presumed.
Because of their finite Larmor radius, the ions sample a different perturbed
electric field than do the electrons sharing the same guiding center position.
The associated charge separation is stabilizing when (klai)2 > Y/wci’
where kl is the perpendicular wavenumber of the interchange mode, a. is the

ion Larmor radius, Yy is the ideal hydromagnetic growth rate, and W, . is

the cyclotron frequency.6 An important result of Ref. 6 was the lack of FLR
stabilization for an m = 1 rigid shift of a cylindrical plasma (m is the
azimuthal Fourier mode number). This suggests that the m = 1 mode may be the
most difficult to stabilize in general.

The papers that have followed Ref. 6 have significantly refined the FLR
theory of MHD equilibrium and stability. Roberts and Taylor obtained equations
and results that were similar to Ref. 6 by an alternative derivation.7 An
improved derivation of the FLR equations was presented in Ref. 8. The authors
of Ref. 8 considered general radial profiles, introduced a variational
principle, and obtained a sufficient condition for stability. 1In Ref. 9 FLR
equations were derived from the Vlasov equation, and an alternative derivation

of Ref. 8's results was provided. Reference 10 extended the calculations of



Ref. 8 to finite beta slab systems with gravity and no z variations. A
stability analysis similar to that in Ref. 10 was applied in Ref. 1l to a
finite-beta, rotating straight 8 pinch, which included a z variation of the
perturbed motion parallel to the magnetic field and featured a numerical
solution of a radial eigenmequation. The m = 1 mode was determined not to be a
rigid displacement in a diffuse-boundary plasma separated from a perfectly
conducting wall by a vacuum region, and the rotational instabiity benefitted
from FLR stabilization even for m = 1.

References 12-14 addressed both FLR effects and the MHD equilibrium and
stability properties of systems with large aspect ratio. - Reference 12
applies Hamiltonian methods to the theory of MHD equilibrium and stability for
rotating systems with no axial equilibrium variation. The axial variations of
perturbed quantities are Fourier analyzed. An energy principal and a radial
eigenequation are derived in Ref. 12. A similar Lagrangian formulation of the
MHD equations was published in Ref. 15. Reference 13 extends the methods of
Ref. 12 to systems with FLR. An FLR Lagrangian is introduced from which Euler=
Lagrange equations are calculated that agree with equations derived from the
FLR expansion of the Vlasov equation. A potential energy is derived from which
a sufficient condition for stability is obtained. This Lagrangian method was
applied to the analysis of the equilibrium and stability of large aspect-ratio
systems neglecting FLR in Ref. 14. Three-dimensional systems were examined in
the paraxial or long-thin limit, which is appropriate to many single-cell and

tandem mirror systems. A good review of three-dimensional MHD equilibrium and

stability issues in mirror plasmas was provided in Sec. 2.2 of Ref. 2.



Particularly important contributions to the theoretical foundation for
the present work are found in Refs. 16-18, The Vlasov equation was expanded
once again using the FLR ordering scheme, and moment equations were calculated
to obtain a radial differential dispersion equation in which the effects of
line bending and field-line curvature in a finite-beta screw-pinch configuration
were additive to the FLR effects. A compact heuristic derivation of the
stability equation accompanies the rigorious derivation in Ref. 18. The
important point is that the MHD geometrical effects of line bending and
curvature are simply additive to the FLR effects because they are separately
small in their respective expansion parameters, the paraxial parameter
A = R/L << 1 and the FLR parameter v = a/R << 1, where R and L are the radial
and axial scale lengths and a is the Larmor radius. This has been confirmed
for systems with three-dimensional equilibrium variation.

There have been a number of recent MHD stability studies for tandem
mirror systems. References 20 and 21 used gyrokinetic theory to calculate
tandem mirror stability with finite-orbit modifications in eikonal and paraxial
limits at finite beta for anisotropic pressure and three-dimensional
equilibria. They obtained ballooning~mode equations and found wave-particle-
resonance and trapped-particle effects were higher order in the paraxial
parameter than were curvature drive and line bending. FLR effects were
determined to be strongly stabilizing and enhanced because of their influence
over the entire length of the tandem mirror in contrast to curvature effects
that typically are severely destabilizing only over a limited domain.
References 22 and 23 provide numerical solutions of the high-m paraxial

ballooning equation with and without FLR effects and with the perturbed



displacement line-tied at some axial position to model the stabilizing end
plugs of the tandem mirror. These calculations determined the critical
central-cell beta at marginal stability as functions of the FLR magnitude and
the line-tying positions. Numerical solutions of the low-m paraxial
ballooning equation with no FLR effects to determine the stability of a tandem
mirror with a sharp-boundary radial profile are reported in Ref. 24.

Reference 25 considered the high-m paraxial ballooning equation with no FLR
effects for an axisymmetric tandem mirror stabilized by energetic electroms in
the end plugs. The energetic electrons were rigid with respect to the MHD
perturbations in this model, and there was an examination of the validity of
the line-tying model employed in Refs. 22-24.

There also have been numerical calculations of the ballooning stability
of tandem mirrors incorporating the detailed structure of the quadrupole end
plugs used in current experiments. Numerical calculations of high-m, paraxial
ballooning stability for the TMX-U and MFTF-B tandem mirror experiments at
Lawrence Livermore National Laboratory were reported in Ref. 26. The same
equilibrium and stability code (TEBASCO) has addressed m = 1, radially rigid
ballooning stability in quadrupole tandem mirrors.27 The assumption of
rigidity in the radial eigenmode profile, motivated by FLR considerations,
allows the reduction to a one-dimensional paraxial ballooning equation, which
1s then solved numerically in TEBASCO with a shooting method. Reference 28
presented a study of low-m ballooning and rotational modes with FLR effects in
low-beta quadrupole tandems. A Galerkin method was used to construct three-
dimensional eigenfunctions and to solve for the complex eigenfrequencies from

the resulting characteristic polynomial. The variational principle in Ref. 28



was based on the Lagrangian formulation of MHD stability with FLR in a
paraxial system presented in Refs. 12-14, and 19 and was applied to calculation
of the low-m stability of the University of Wisconsin Phaedrus tandem mirror
experiment. A similar stability calculation employing a paraxial variational
principle and trial functions applied to quadrupole tandem mirrors was
presented in an earlier publication.2

The calculations presented here address interchange, rotational, and
ballooning instabilities for arbitrary values of m in axisymmetric tandem
mirrors with FLR effects. The configurations are presumed to be long and
thin, and the plasma beta can be finite. We obtain a linearized equation of
motion for the flux tube displacement from the FLR Lagrangian for a paraxial
system. The formal derivation of the Lagrangian has been given in Refs. 12,
14, and 19. The focus of this paper is the general numerical and specific
analytical solution of the linear equation of motion and applications to
tandem mirror stability.

One of our principal contributions is the introduction of the FLORA
computer code to perform the numerical integration of the linearized equation
of motion, which is solved as a two-dimensional initial-value problem. FLORA
computes the radial and axial structure of the eigenfunctions using the
magnetic flux ¢ and axial position z along the field line as independent
spatial variables. The code accommodates a variety of radial and axial
profiles for the density, pressure, vacuum magnetic field, and FLR
coefficients. Perpendicular and parallel pressure balances relate the
pressure components and determine the self-consistent magnetic field; this

constitutes the equilibrium computations in FLORA that precede the stability



calculations. Numerical and analytical results illustrate various types of
low-frequency MHD instabilities in axisymmetric systems and the stabilizing
influences of FLR, nearby conducting walls, line-tying by cold plasma halos,
and energetic electrons.

The remaining contents of this paper are organized as follows, Sec. II
sketches the Lagrangian theory of MHD stability. The basic assumptions and
equilibrium relations for paraxial systems are presented here, and the linear
and nonlinear equations of motion for incompressible displacements of the flux
tubes are derived from Euler-Lagrange equations. We also construct a
conserved energy for the linearly perturbed system, which provides a
sufficient condition for stability. Section III describes our numerical
integration of the linear equation of motion in the FLORA computer code.
Several model problems are presented in Sec. IV; these examples either admit
analytical solutions for the linear equation of motion or in omne case have
been solved numerically in an earlier study. They provide both valuable
insight and thorough tests of FLORA. We model the paraxial equilibria of
axisymmetric tandem mirrors in Sec. V. We examine the stabilizing influence
of energetic electrons that are mirror—confined in the end cells of a tandem
mirror in Sec. VI. The electrons dig a stabiliziag magnetic well for the
plasma and are presumed not to respond to MHD perturbations because of their
rapid drifts. Section VII contains analytical and numerical studies of the
MHD stabilization afforded by a cold plasma halo that line-ties the surface of
an interchange-unstable hot-plasma core. The paper is concluded in Sec. VIII
with a discussion that summarizes the paper's results and comments on research

in progress and future directions.



II. DERIVATION OF THE FIELD-LINE EQUATION OF MOTION

A, Paraxial Equilibrium

The foundations for the equilibrium and stability theory presented here
have been previously presented in Refs. 12-14, and 19. In this theory moments
of the Vlasov equation are calculated in the limits of small inverse aspect
ratio A = R/L << 1 and small Larmor radius so that v = a/R << 1. These two
expansion parameters are assumed to be comparable.

The magnetostatic equilibrium condition is

JxB-VeP=0 (1)

for a charge-neutral system in rationalized emu units. The phase-space
distribution functions are functions of the constants of the motion. We
further specialize to axisymmetric equilibria. Hence, the components of the
pressure tensor are functions of the magnetic field B and the magnetic flux ),

but are independent of the angle variable; this is a condition of isorrhopy.

One uses V x B = J and P RL(; - bb) + p, bb to reduce Eq. (1) to

2 2
B
] 5 (E )

to lowest order in A and V. This is a statement of perpendicular pressure

balance and implies

2

%— +p, = P(2) , (3)
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a function only of z. At first order in A and v, one obtains the parallel

pressure balance condition

2
b . V(%— + pl) -B V[(B2 +p - p“)/B] =0 . (4)

All pressure components have been summed over species in Eqs. (1-4).

A A

The curvature of the flux lines b * V b is second order in A. Thus,

~

b+ ¥V =23/3z + ﬂ(kz) ~ 3/3z. Furthermore, as a consequence of the paraxial

2

. . . 2
approximation and V * B = 0, Br 1s of order A compared to BZ; hence, B" = BZ

+ ©00%). as yet, there have been no modifications due to FLR effects.
These emerge at second order in V when there are finite angular variations
in the equilibrium or perturbed quantities.

Equations (2-4) are the plasma equilibrium conditions. We now review a
number of constraints we choose to impose. These limit the arbitrariness of

4,19

. . . . 1 ; co -
the distribution functions. The constraints are most familiarly

expressed in terms of the allowed dependences of P, and p, on B and .

We first assume that the phase-space distribution functions are functions

of energy
_ 2
€ = MV /2 + uB + g0 (32)
and magnetic moment
M= mv 228 (5b)

for each species s. The partial pressure components for the various species

are
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2
p, . = 4TBm fgpd_e v f (6a)
Ils S v” IN"s
and
- dude b
Pls 4ans “st . (6b)

v
I

In the absence of an ambipolar potential (¢ = 0), parallel pressure balance

for each species is
_ 209
pls(B) = - B aB(p“S/B) . (7)

With a finite ambipolar potential, Eq. (7) remains true only if summed
over species and charge neutrality is assumed. (A sum over species is to be

understood when the species subscript s is omitted). The pressure components

and the number density are strictly nonnegative. Equation (7) becomes

d
Pls(B) = -B (=) - nqB = ¢ (8)

when ¢ # 0. The self-consistent ambipolar potential is determined by the
quasineutrality condition. Realistic calculation of distribution functions
and the self-consistent ambipolar potential requires a model for plasma
transport, which is beyond the scope of this paper. Various ad hoc model
potential profiles will be considered.

We next impose two macroscopic stability conditions that are related to
the well-posedness of the equilibrium problem.14 Stability with respect to

the firehose mode (lengthwise buckling of the magnetic field lines) requires

(9)
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and with respect to the mirror mode,
23 Q
— > . 10
B35 B 0 (10)

Both these conditions will be assumed to be satisfied.
A sufficient condition for microstability often employed is that f be a

monotone-decreasing function of energy

f <0. (11)
€—

It then follows from Eqs. (6) and (11) that

Py

9_.(__) <0 (12)
3 | 2] =

This remains true for a finite ambipolar potential.14 However, Eq. (11) is

a stronger stability condition than is necessary. Single-cell and tandem
mirror plasmas are often stream-stabilized or stabilized with sloshing ions to
prevent loss—cone instabilities. The associated stable distribution functions

are frequently not monotone-decreasing functions of energy. Therefore, we

shall not require conditions Eqs. (11) and (12) to be satisfied.

B. FLR Lagrangian for Low-Frequency Motion

Curvature and FLR effects are found at second order in A and v in the
equations of motion. We also retain time derivatives at this order, which

presupposes that all of the perturbed quantities have only low-frequency

13,14,19

temporal variations. The FLR Lagrangian is now introduced from
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which we derive the Euler-Lagrange equations describing the plasma and
field-line motion in the plane transverse to B at second order in )\ and v

subject to the constraint of incompressibility. The Lagrangian density is
L=2( 1x 1%+ ax - Ix .1 Ix 1) (13)
2P X, X " X9 T X Qlx ’

where x = (x,y) is the position of the magnetic field line expressed as a
function of the flux coordinates Y and 6, of the axial coordinate z, and
of time t. The subscripts Y, z, 8, and t denote partial derivatives. The

flux coordinates { and 6 have the property that

B =Vyx VO . (14)
. . .. 13,19
We also require the definitions of the FLR coefficients
(MBz)w
a = p(Q1 + Qz) = 20¢lp T (15a)
o) K B
= - Y 2, v _ vy
Y PR, 9, o% + (MB )qJ 5 5 (15b)
where
2 2
= - <
M ; nm_ vl>s/qu , (l6a)
- - 3 4 2
K Z n m_ <Vl>s/8qs , (16b)

E]
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p is the mass density, ¢ is the ambipolar potential, q is the species
charge, n_ is the species number density, m is the species mass, and the
bracket indicates an average over the distribution function. It should be
noted that the quantity denoted as M has a simple physical interpretation as
the density of gyrational angular momentum, and the quantity K is involved in
19

the transport equation for M.

For a rotating isothermal Maxwellian plasma,

= 17a)
€ Z p (20, + Qg + OF)_ (17a
and
= - 17b
; o (R + Qg (R + o), (17b)
where
Qp = 9¢/ay (18a)
-1
- _ 8b
Q* (e,n ) 3p /3y (18b)
-1
Qgg = (e.n )" p, 3%nB/3Y (18c)

are the azimuthal ExB, diamagnetic, and VB drift velocities.

In general, the coefficients p, P Pyp €, %, and Q are all functions
of { and z, and are independent of time. It can be shown that the Lagrangian
(13) yields the same equation of motion as those calculated directly from

. . 19
moments of the Vlasov equation in the paraxial and small FLR approximations.
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An important constraint on the motion of the field lines is
incompressibility. The Jacobian derived from Eq. (14) is

-1

X - x = B (19)

I
and is maintained by the motion. Equations of motion can now be derived from
an action principle with Eq. (19) incorporated as a constraint by introducing
a Lagrange multiplier k = k({,0,z,t). The plasma is presumed to be tied to
the field lines so that (xt,yt) is the fluid velocity of both the plasma and
the field lines. The boundary conditions on the perturbed transverse
displacement are that it vanishes (shorted) on a lateral boundary surrounding
the plasma, that it either vanishes or its axial derivative vanishes
(insulated free-boundary condition) at the ends of the configuration, and that

all quantities are periodic in 6. The action 1is

t

2 x
1=jt‘1 dtfdvol [L—K(ng-ie— vl o, (20)

A

where x* = x x b. We derive the Euler-Lagrange equations from 81 = 0 by

varying X along the trajectory, x > x + §§, with §5 = 0 at ty and ty:
2
81 = f dt[dwdzdeéi
Y1
1 82L d 198L 3 1 9oL * *
[’Eatagt T3 B ax 3z B ax, T Ne¥y T Ky¥e| T 0 (2L
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Because gﬁ is arbitrary for t # tl’tZ’ then the expression in the square

bracket must vanish for I to be stationary. One computes the scalar product

. . * * - o1
of this with 5¢ and Xg» and uses Xg iw = Xg §¢ B and
e %
5¢ . 5; = Xg . Xg = 0 to obtain
- « F + =0 (22a)
Byt Ky
and
T Xyt F + Kg = o, (22b)

where F = BZL/Btait + B(a/BG)B-laL/aie + B(B/BZ)B—laL/BEZ. Differentiation of
Eqs. (22a) and (22b) with respect to 6 and ¥, and algebraic elimination of
K6w = Kwe yield

x L]

F . = . 23
x, * Fy F 0 (23)
Equation (23) is the nonlinear equation of motion for transverse incompressible
displacements.

Consider time-dependent displacements of infinitesimal amplitude with

respect to a time-independent equilibrium. The linearized equation of motion

is

G£¢ . EG + Xy * SEG - 659 . EW P ggw =0 . (24)
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The linearized incompressibility condition becomes

¥

8x, Xy . 656 = wa yg ¥ Xy Gye - Gxeylp - Xg Gylp =0 . (25)

X e

+

In Eqs. (24) and (25), 6 is a linear operator that generates linear
displacements of x and commutes with partial derivatives with respect to |, 6,
z, and t. We employ the contravariant representation of the linearized

displacement £ = dx used in Ref. 14,

£ = X5¢ + Yéﬁ (26)
where

X =gV, Y = £-V0 .
The linearized incompressibility condition Eq. (25) becomes14

B(X/B)w *¥q=0. (27)

At this point, assume a complex-exponential normal mode: X = Xm(w)exp(ime—iwt)
+ c.c., with m > 0. The subscript m will ordinarily be omitted, except where

needed for clarity. Use of Eqs. (24-27) and the definition of F yields after

an abundance of algebra
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2_
2 2m kp
9 2 m pT X ___ ¢
aq;[pTerp()] 22X+(pw—oT)¢B 5 X
2_ 0 Q d d d Q 2 d d X
r =
‘“5(233—") ‘wg T[TEZ(E’@a)” 0 . (28)
r B
2 2 2 2
where pT = plw - mu)(Q1 + 92) + m Qlﬂz] = pw - mwd-m ¥,
(3/3t) = - iw, k = T, is the normal curvature, and p = (p_L + P”)/Z-

X satisfies the boundary conditions X = 0 at the lateral boundary and either
. : 4
X = 0 (end shorted) or 3X/dz = 0 (insulated) at the axial end plate.1 Another

boundary condition needed at the ends is B, = 0 as a consequence of pl =Py = 0.

b

Equation (28) can be rewritten in terms of the normal displacement

£ = £*VY/IVWI = X/rB and the complex-valued Fourier coefficient Em ;

4 d 2 T 2 2 2 —
aw(pTr B T £) + (1 -m") p g E+r pww £ - mkr ZDW £

33—3-2— (Q—B—gr (Bg-qug)lz =0 . (29)

We find that both forms of the linearized equation of motion for the perturbed

- mip | Q3
m rB dz [r2B3 dz (rBE)] tr

Wl
&

field-line displacement are useful in the applications addressed in the
remaining sections of this paper.
For use later on, we also give a line-averaged version of Eq. (28):

2 2
<pr"BT(X/B) > 2 <pTX/r2 B >

vy o ™

+ <(pm2 - pT), X/B> - 2m? <k§¢ X/rB>

v

- <Qr (Bw/B) (B(X/B)w)z >=0 , (30)
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where <*> = [ (*) dz/B. (This version is useful in the treatment of
flute-like modes, for which X is either exactly or approximately independent
of z.) Use has been made here of the open-ended boundary conditions Xz =0
and B¢ = 0. (If the conducting boundary conditions are used, then flute-
like modes are excluded.)

With Eqs. (28) and (29) we can derive a local stability conditiom for
three-dimensional systems directly. This extends the two-dimensional local
stability criterion presented in Sec. X of Ref. 13. Consider the eikonal

limit of Eqs. (28) and (29) in which both 1(3/3z) = ikl + © and m + «, The

resulting characteristic equation 1is

pr - md- mzzy - sz =0, (31a)

which yields the following sufficient conditions for local stability at finite

beta:

Q> 0, X% + by >0 . (31b)

The first inequality is the firehose stability condition (9). A system that
satisfies (31b) is stable to breaking up into modes of arbitrarily short
wavelength both parallel and perpendicular to the magnetic field. We shall
restrict ourselves to systems that satisfy Eq. {31b) in the rest of our

analysis.
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C. Energy Theorem

The system considered here is non-dissipative and possesses a conserved
energy that is directly calculable from the Lagrangian. Assume a variation in
the displacement caused by an infinitesimal time tranmslation, 8x = At 9x/dt,

then

t

2 %
GI=Gf dtfdvol {L - (B iw.iﬂ— 1)] =Atfdvol [L(tz) —L(tl)]
1
-2 x x g |
=At[ dtfdedlpdz 3t - (- B E+Ke§w-|<wxe) +Atfdv01—a?°a—i:t
1 1

Equations (19) and (21) have been used to obtain this. It follows that

deO]. 25'%_“1_. —E-gi'-]_, =0,
t 3I{-t t2 at l(.t tl
and hence,
P ox
e%=fddedz——oaL_L
B ot ox
—t
dyd
=f 21?dz (Dlitlz + @'59'2 + QIEZIZ) = const. (32)

This constraint of the nonlinear motion is the system energy; the first term
in the parenthesis is the kinetic energy and the second and third terms are

the potential energies associated with angular momentum density (an FLR

effect) and field-line tension.
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There is also a conserved energy for a system that is linearly perturbed
from a stationary equilibrium. We expand the energy # in a Taylor series each

of whose terms 1s conserved,

2
%=L7é°)+w+%%+... , (33)
where,%éo) = fdvol Qy15éo)|2 + Q Iiio)lz)/Z in the "null representation"
(o)

il

defined in Ref. 13, i.e., X, 0, and A is the linear displacement

operator, e.g., Af(x) = Ax*9f/dx = E+3f/3x. The equilibrium is determined by
AA = 0 subject to the Jacobian constraint, because it is statiomary. Solutions
of the equilibrium problem satisfy Eqs. (22a) and (22b) with x, = 0.

Integration by parts, use of the equations of motion and the incompressibility

constraint, and a few pages of algebra reduce the second-order contribution to

Eqs. (32) and (33) to a bilinear conserved emnergy,

2
2) A dyded 2 2 2 *
# =2_f_‘l’B_z [oix 17 + @lxg1” + Qlx | _K(Bfw'ie_l)]

2
X 2
_ [ dyd6dz t 2 2\ - X
f 25 P\ 22 T T i) PRy TR 0
2
X X 2 2
z 2 .2 6 X (x d x)]
+Q rr Y )+ Y | ===+ [z - B2} ;. (34)
r2B2 z r2B2 r2B2 B ay B

The first term in Eq. (34) is the kinetic energy; the second term is the
quasi-gravitational potential energy associated with guiding-center-drift
motion in a curved magnetic field; the third term is the potential energy due
to bending the magnetic field lines; and the fourth and last term is the

quasi-elastic potential energy associated with FLR. The energy integral for a
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paraxial system not restricted to axisymmetry was derived omitting FLR effects
in Sec. V of Ref. l4. The FLR potential energy for a system with no axial
variation was calculated by Newcomb in Ref. 13. Equation (34) consolidates
these earlier results for an axisymmetric equilibrium. We refer the
interested reader to Refs. 13 and 14 for algebraic details on the derivation
of Jf(z).

The conserved energy gives valuable insight into the low-frequency
stability of the plasma. If the plasma is unstable, the kinetic energy term,
which 1s always nonnegative, grows at the expense of the potential energy
terms. The sum of the potential energy terms must then be negative and
growing in magnitude. For Q > 0, the line-bending term is always positive
and stabilizing. The second and fourth terms can be of either sign and,
hence, can potentially drive instability. The familiar pressure-weighted
curvature term is destabilizing when_Ewk > 0. The FLR term is
destabilizing when % < 0, because the square bracket multiplying % is non-
negative. We note in the definition of % that when the ExB rotation exceeds
the diamagnetic-like and VB-like drift frequencies % is always negative.

A sufficient condition for stability is that the potential energy U(z)

be positive for all perturbations &, i.e.,

U >0, (35)
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where
2 X s 2
U(Z) dydbdz -2p. rBk + Q z_ .2y
2B ] 2 2 2.2 z
r B r B
2
X 2 2
6 X (x 3 x) ]
+ @V[———— -———+|—= - B+ = . (36)
2,2 2.2 \rB 3y B
For a low-beta flute mode, perturbations with X, = Y, = 0 minimize the

strongly stabilizing line-bending energy. For % > 0, we note that

2 x2 2
pl?) , [dudédz | 2, rBk —— + % _& X . (37)
= 7B ¥ 2 2 2.2 2.2
r B r B r B

A sufficient condition for finite-m flute stability whend > 0 1is that the

right side of Eq. (37) be nonnegative on every field line, viz.

dz — 2
fr2B3 [- 2 v rBk + (m Dyl >0 . (38)

Equation (37) demonstrates that with % > 0, m = 1 flute modes are least
stabilized by FLR and stabilization increases with (mz—l)@/. In its most
general form, Eq. (34), the energy theorem can provide both useful insight
into the interplay of stabilizing and destabilizing physical mechanisms and a
valuable diagnostic check on our numerical solution of Eq. (28). An improved
energy theorem that recovers stabilizing gyroscopic effects can be obtained by

transforming to a rotating frame as in Sec. XV of Ref. 13.

ITT. NUMERICAL SOLUTION OF THE STABILITY EQUATION

One of the principal objectives of this work has been the development of
the FLORA computer code to numerically solve the linear stability equation,

Eq. (29), as an initial-value problem. The solution allows us to prescribe a
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wide variety of two-dimensional equilibrium configurations without restriction
to the specialized profiles that admit analytical solution. It also
facilitates more realistic stability analyses of experimental situatioms and
reactor designs. Analytical solutions of the stability equation will be
presented in subsequent sections.

FLORA first computes a paraxial equilibrium with finite pressure and then
integrates the linearized stability equation. The vacuum magnetic field is a
function of z and the parallel plasma pressure as functions of B and y must
be provided. Condition (3) (parallel pressure balance) then determines p by
analytical differentiation of p“/B with respect to B, whereupon condition

(2) (perpendicular pressure balance) gives an algebraic relation for B(Y,z):

2

2
B™ + 2pl(B,lj)) = Bvac

(z) . (39)

The radius of the lines of force r(y,z) is numerically calculated from
9 b
rc = 2[ dy'/B(y',z) , (40)
0

and the curvature k = L is determined by analytical differentiation under
the integral. The mass density p and the FLR coefficients A and %, as
functions of Y and B, must also be provided as input to the calculation.

With all the necessary coefficients determined, the stability equation is
integrated by means of standard finite-difference techniques. Reintroducing

time derivatives in Eq. (29), one obtains
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2 2 2
d 9 . d 2 4 49 (1 - ) d . d 2
at at
2 » Qr
20098 _ 5, -y g | Q8 3} 3 |3 (g -
TPy Ty T Akt B aszBs 32 (ng)]‘”aw;B az[Baz<aw rg)]% >

(41)

The flux coordinates z and | are analytically transformed to new coordinates
u(z) and v(y), and the spatial derivatives in Eq. (41) are represented as
second-order-accurate centered finite differences with respect to u and v.
This facilitates the use of a nonuniform z, Y mesh to improve spatial
resolution where desirable, while preserving second-order accuracy. The
highest spatial derivatives appearing in Eq. (41) are represented by 9-point
operators.

To understand the finite-differencing of the time derivatives, consider

Eq. (40) written in the symbolic form

a? 29

where .o/, 48, and ¥ are linear operators with real coefficients. We have

recast Eq. (42) in the partially implicit form

& . n+tl . .n n-1 . B F_ n-l
5 (g 28 + & ) + 1 AL (g £ )
At
. @ €€n+1 . (1 ; €) (€n+1 . 26n N En—l) -0 | (43)

where the superscripts indicate the time level, € is a numerical centering

. . * . .
parameter with typical value 0 < € << 1, and £ 1s the previous iterant
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value of €n+1. The solutions of Eq. (43) for the real and imaginary parts

of £n+1 are coupled explicitly to the imaginary and real parts of g*,
respectively, and to both the real and imaginary parts of g“ and g“"l.

The real and imaginary parts of En+1 are not directly coupled to one

another within an iteration, which reduces the size of the matrix of
coefficients by one-half but requires an iterative solution for the real and
imaginary parts of €n+1_ The solution to the banded-matrix equation that
results from Eq. (43) is obtained by a machine-language-coded direct solver in
which a lower-upper (LU) decomposition is performed only once at t = O and a

back-substitution is dome on each iteration. A sufficient condition on the

convergence of the iteration is given locally in ¥ and z by
ImZAe/2p1 < 1

for equilibria that vary weakly in space. This .s equivalent to the condition
that the real part of the linear mode frequency "e accurately resolved when
Alp is finite (see Sec. IV).

The implicit time-differencing of the @E term in Eas. (42) and (43)

_ _ , L 2, \1/2
dispenses with the Alfvén Courant condition vFAt’Az < 1, where vA = (B /p) .
With 27= % = 0, (13E/3yl, 13E/361) << id£/3z1, a uniform magnetic field; and a
cold uniform plasma, Eq. (41) describes shear Alfvén waves: (paz/at2

2.2 2 . . . . .
+ B797/327) £ = 0. An explicit time integration of this would
require that a Courant condition be satisfied in order to avoid numerical
instability. The resulting time step at marginal stability, AtC = Az/VA,

would be much smaller than that necessary to accurately resolve a simple
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2
/ << 1,

curvature-driven interchange mode, viz. vy AtC = ﬁ’(BAzz/RPRC)1
where Yy 1s the interchange growth rate, B is the ratio of the plasma
pressure to the magnetic energy density, Az is the axial grid spacing, Rp
is the plasma radius, and R;l is the flux-line curvature. The partially
implicit time integration indicated in Eq. (43) allows us to use a larger time
step appropriate in resolving the characteristic FLR frequencies and the
instability growth rate.

Before leaving this section, we comment on an alternative numerical
scheme for solving the stability problem. Suppose one establishes an array
s exp(-iwt) + c.c. containing all the values of £(y,z,t) defined on the
two-dimensional mesh. The linear operators .« 48, and € in Eq. (42) are then
deduced from the spatial difference operators on § used to represent Eq. (41)
and can be cast in matrix form. One then Fourier analyzes in time to examine

the normal modes, and Eq. (41) becomes

(-wz—é¢+w;§+ f)'_§=0, (44a)
whose nontrivial solution is

det(- 'l + WB+€) =0 . (44b)
The order of this characteristic polynominal is twice the total number of mesh

points, and the solutions for w are finite-difference approximations to the

true eigenfrequencies.
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A characteristic polynominal equation similar to Eq. (&44b) is generated
by using a Galerkin method in which a set of orthogonal basis functions
(finite elements) with analytical spatial derivatives are employed to
represent E(P,z). This approach has been used in Ref. 28 to analyze the
low-frequency stability of a low-beta quadrupole tandem mirror including ExB
rotation and FLR effects. With this method it may be necessary to solve for
all of the roots of the characteristic polynominal tc ensure that the least
stable (or most unstable) root is found. 1In contrast, the most unstable mode
always dominates the linear impulse response in the integration of the
initial-value problem after a few e-foldings. Cf course, the e-folding times
become longer and longer as marginal stability is approached, at which point
relative inaccuracies in the observed growth rates due to finite differencing

are magnified in the integration of the initial-value problem.

IV. ANALYTICAL AND NUMERICAL RESULTS FOR SPECIAL CASES

In this section we present analytical and numerica: solutions of the
low-frequency stability equations, Eqs. {!8) and (29), 1n several limiting
cases. These calculations illustrate many important characteristics of
interchange and rotational stability with FLR and conducting wall effects.
The analytical solutions provide valuable insight and serve as a standard for

comparison of the corresponding results from FLORA.
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A. Low-Beta Limits

We consider first the so-called "low-beta limit", where B is defined as
the material-to-magnetic pressure ratio. To state the ordering rules of the

B expansion as concisely as possible, we put
P M: K, pl’ P“, Bw; XZ = 6(8) )

m, w, ¢, 2, 2, B, k, X, X, = o) . (45)

2)
To leading order, B is independent of Y and X is independent of z. The

two characteristic frequencies become

B
Q, = Q, = +— M , (46)
by B T 0y T My

wherein K no longer appears. The flute condition, Xz = 0, is enforced by the
large terms in Eq. (28). These, however, are annihilated by the averaging
operation in Eq. (30), from which is derived the final eigenequation. This

takes the form of

2
(29 A x¢)¢ (m“/2y) AX

+ m(wfw + mgw) X + m2 H X =0

4
w b ( 7)
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where

A= ew’ - fow - gm® , (48a)
e = <p/B> , (48b)
f = <H7B> = <p(£21 + 92)/B> , (48c)
g = <wB = - <pRy Q,/B> (48d)
H = - <2kp/rB> . (48e)

We see, then, that the z-dependence in this simple case can be integrated out

completely.

Assume first ﬂl = 92 = 0 (no rotation, no FLR), or equivalently, f = g = 0.

Equation (47) then simplifies to

2
me 2
), + 2 X] m H, X,

w2 [-(2¢e X
or finally, if we multiply by X and integrate,
2.2
2 m’ X 2) 2-/' 2
w” fe + 29 X7 )dp = [ H, X" dy . (50)
Je () p oo

. ; . o 2 .
This implies instability, w~ < 0 (at least in the case of large m), unless H

ls everywhere an increasing function of V. Assuming H » 0 at the lateral

boundary, we see that H < 0 is necessary for stability against the flute mode.
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Let us observe now that k/r in the present case is a function only of z.

To leading order in B, B is a function only of z, whereupon, by differentiation

of £?B = 2y = const., we readily obtain

g 3/2 B ) . (51)

kir=1r [r = - L B (
zz 2 z'z

Using also the boundary condition-g = 0 at the ends, we have finally

H = EB-I/Z(B_B/Z B )
z'z
-1/2 — =-3/2
- -7V (pB 2y 5, (52)
z z
If the monotonicity condition (12) is satisfied, then 53—3/2 is always

a decreasing function of B, and H according to Eq. (52) is positive, implying
instability.14 If it is not satisfied (as in the case of a sloshing-ion

distribution), then H can be of either sign.

B. Eikonal Approximation

For large m, the so-called "eikonal approximation' is applicable, whereby

Eq. (49) is simplified to

n? X (H, - wle/20) = 0 . (53)

Let us assume H¢ < 0 (the usual case). We then obtain the standard result for
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the local growth rate y on each individual flux surface in the limit of no

rotation, no FLR, and large m:

_2 2

¥ = -w = - 2yH /e . (54)

v
We see that the growth rate approaches a finite iimit as m > @,

For nonzero 91, £ the corresponding approximation yields a different

2 )

result, i.e., A = 0, or

ew’ - fmw - gm’ = 0 , (55)

as the local dispersion relation. In this case, then, the angular frequency w
(or in the unstable case, the growth rate) is a iinearly increasing function
of m.

To the order of approximation represented by Eq. (55), the criterion of

stability is simply & > 0, where
£° + eg . (56)

Again it 1s found that the gyroscopic term (coefficient f) is always
stabilizing, whereas the quasielastic term (coefficient g) is stabilizing only
i1f positive. The combined effect of both terms (properly weighted) is measured
by the quantity 2. Note that in an axially uniform system, the stability
condition (56) is identical to the local stability condition (31b). However,
2 could be negative in an axially non-uniform system that is locally stable
everywhere.

Using formulas (15) and (48) for e, f, and g in terms of fundamental

quantities, we rewrite (56) as
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2 = <pa/B>? - <p/B> <pR’/B> + 1= <p/B> <BM /o> (57)

16 y

where = % (Ql + 92). This quantity §2, the arithmetic mean of the two
characteristic frequencies, is the so-called "canonical" angular velocity of

"axial shear" to

Ref. 13. In the following, we use the terms '"radial" and
refer specifically to the dependence of {) (rather than 92, say) on { and z.
The two terms in Eq. (57) involving { represent the effect of axial
shear, which is always destabilizing. Indeed, these terms cancel exactly in
the case of zero shear (Qz vanishing identically), whereas in every other
case the negative term is the larger of the two (Cauchy-Schwartz inequality).
On the other hand, the FLR term (the term involving M) is always positive,
hence stabilizing. We see that the shear-driven instability can always be
suppressed by an FLR term of sufficiently large magnitude.
To 1llustrate also the stabilization effect of FLR on the curvature-
driven mode, let us consider next the case of weak rotation and weak FLR:
f, and Q, both small (say of order €) compared with y or w. In this

case too, the eikonal approximation is applicable (for m of order E-l), and the

local dispersion relation to which it leads 1is

A+ e;z = e(u)2 + ;2) - fmw - gm2 =0 . (58)

We are again using y to denote the classical growth rate, as given by

formula (54). The criterion of stability is

m 2 > ey . (59)
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Thus, if the positive-2 condition is satisfied, there exists a critical value
— 1/2 . . -
of m, m_ = y(e/2) , such that the curvature-driven mode is stabilized
o
for all m > m .

Plasma rotation is an important source of free energy that can drive MHD
instability. This is illustrated in the rotational instability of the
rigid-rotor equilibrium of Ref. 17, which is discussed in Sec. IV.C. Axial or
radial variation in the plasma rotation can also lead tc instability.

Consider plasmas with significant ExB rotation and weak FLR such that a= 2p¢w
and % = - p¢$. In this limit the high-m, low-be:ta dispersion relation for

flute modes, Eq. (55), gives

mi m 1/2
= — = 2 60
w =S+ o , (60)

where with no FLR = QE and
f > <2pQ/B> (6la)

2
g > - <pR /B> (61b)
2 2

D > <pQ/B>° - <p/B> <pR°/B> . (6lc)

21is always nonpositive by the Cauchy-Schwartz inequality. If @ is axially

uniform, the eikonal limit of Eq. (47) gives

2

‘;‘—q)Ax+m(wfw+mg¢)x+mZH¢x=o (62)

with A = @(1). The resulting eigenfrequency is
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-1 1/2
w=mRt i (—w <B<pag£3 2 0%+ yz) (63)

where ;2 is given in Eq. (54). The first term in the parentheses is a
Rayleigh-Taylor centrifugal drive term.

The existence of instablity driven by ExB rotation could be anticipated
from our energy theorem (34 - 36) for systems with % < 0. Equation (63)
suggests the possibility that the combination of rotation and a hollow density
profile, <B_18p/3¢> > 0, might stabilize a configuration with bad curvature.35
This has been quantitatively studied with FLORA and will be reported elsewhere.

Figures 1 to 3 exhibit a numerical study with FLORA of modes excited by
sheared rotation. 1In this case { was equal to a constant value in the
central cell and to a different constant value in the anchor cell of a simple
tandem mirror. The tandem equilibrium considered (Fig. 1) was interchange
unstable because of axially sheared rotation and bad curvature (Fig. 2). The
growth rates are shown to increase with increasing shear and mode number m
(Fig. 3). The eikonal theory does very well in predicting growth rates for
the entire range of m and the shear values indicated. The analytical growth
rates for finite shear are given by Eq. (55) and for no shear by Eq. (63).
In the presence of trapped particles, the low-frequency instability excited by
axial shear is modified as shown in Ref. 37.

Returning now to the simple case f = g = o (or Ql = 92 = 0: no
rotation, no FLR), we seek a better estimate of the maximum growth rate. This
1s provided by a simple WKBJ calculation.

The fastest growing interchange eigenmode is localized in \{ around the
flux surface on which Y is a maximum. Introduce the variable u defined by

du = dy/2ey in Eq. (47) with f=g=o, which becomes

36
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2
é—i X+ kwix=0, (64a)
du
where
k(u)2 = -m? &2 1+ ?2/w2) . (64b)

2 . . . .
Expand k(u)” in a Taylor series around its maximum at u, (assumed to occur
at an interior point; see Fig. %4a) to deduce the eigenfrequency w from the

WKBJ condition,

2 9 9 1/2
du k(u) %f du lk - K (uo—u) /2 =(n+ 1/2) 1, (65)

2 2
where k= k(u )7, K
o o

—Bz(kz)/au2 at u_, and k2 - K(u - u)2/2 =0
0 o o

at u = Upsu,. For m >> 1, the fastest growing mode has an eigenfrequency

2

w = - yz(l - |2¢Zy2 1/2

wwl /mYO) . (66)

This is the lowest radial mode n=o and has no internal nodes. We have defined
2

2 _ n2-2 _
Y =37y /3¢2 at ¢ (u ) = Br2/2 and Yz = ¥y~ at u . The values of u_and

Wy o o o o o o

2 . . .
Y, in Eq. (66) determined by dkz/du = 0 can be replaced by the values of u

-2 — . . . . .

and y° where de/du = 0 (its maximum). The resulting change in Eq. (66) 1is
higher order than ©(1/m). Equation (66) indicates that there is a reduction
in growth rate for finite values of m. There would also be a reduction in the

growth rate if the mode could not maintain its axial flute character because

of line tying at an axial boundary, X(z = L) = 0, for example. The
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stabilization afforded by line bending is illustrated both by the finite
positive-definite Q term in Eq. (34) and by the term kz vi in the
linear dispersion relation in the next sub-section.

The eigenfunction is centered at wo and has an effective width Ay « m_l/2
determined by the turning points, k(u)2 « ;(u)z + wz = (0, and given approximately
by

w2 + Y2 zono L/2 (
Ay ~ —_—Y - aiy? (1/2 ) 67
by v
As expected, the agreement of the numerical results obtained from FLORA with

the WKBJ results Eq. (66) for high-m curvature-driven modes at low beta

steadily improves as m increases (see plot of eigenfrequencies in Fig. 4b).

C. Rigidly Rotating 6 Pinch

The next example illustrates rotational instability with FLR effects in a
straight O-pinch configuration. Here we recover the stability equation
derived earlier in Ref. 17 and obtain good numerical agreement between the
numerical results presented there and those obtained by use of FLORA. This
earlier research addressed the low-frequency stability of an axially uniform,
rigidly rotating 6-pinch with finite B and FLR, with isotropic Maxwellian
velocity distribution functions, and with both Q* and QE constant. With no
curvature drive, plasma rotation provides a centrifugal force that can cause
instability.

Consider Eq. (28) for a system with a z-independent equilibrium. Fourier

analyzing the z dependence of £, we put 3f/3z = ikf; and we also make
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. . -1 .
the coordinate transformation 3/9y = (rB) =~ 3/dr. After a straightforward

algebraic manipulation we recover Eq. (10) of Ref. 17
I 2.9 2 2. ra, 2 2.
a7 L1 PT-F7) == E£] + r&[(1-m )(pT-F ) + 7= (pw - F )] =0, (68)

where.’]2 = kZQ = sz2 and pT = p(w - Qe - mQVB)(w - mQp - m Q*).
We note the appearance in the.‘Z2 term of the linear line-bending restoring
force so that all modes are stable for sufficiently large lki.

In the absence of FLR, X = Y =0 and T = wl = szz/p, so that Eq. (68)
reduces to the well-known dispersion relation for a simple shear Alfvén wave.
This provides an elementary check on FLORA: it was found that stable shear
Alfvén waves are correctly reproduced within the accuracy limits imposed by
the differencing scheme. In Figs. 5 and %, we compare the eigenfrequencies
and radial eigenmodes obtained in Ref. 17 with those obtained with FLORA for
the same equilibrium using a 40 x 40 grid and lw*Ati = 0.02 for modes
with n=0 and m=1 or 2. Frequencies and growth rates are normalized to {¥
and are plotted as functions of the normalized snear-alfvén-wave frequency
kVA/Q*, where vi = Bz/o. The relative plasma pressure on axis is
parametrized by BO = 2pl(0)/Bg and the plasma rotation speed by
o =1+ QE/Q*. All modes are eventually stabilized at large values of kVA.
The agreement of the eigenfrequencies and eigenmodes in FLORA with those in

Ref. 17 is good, in keeping with the finize differencing errors. The

agreement is better for the eigenfrequencies than it is for the eigenmodes.
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D. Square Plasma Profiles with Wall Effects

A simple, though artificial, model problem that demonstrates the
stabilizing effects of both FLR and a nearby conducting wall is given by a
system with square radial profiles for the density, pressure components, and
FLR coefficients. Consider a low-beta system with two regions in the radial
direction and insulated free boundaries axially. The inner (I) and outer (II)
regions meet at ¢p = Br§/2. Note ghat B and hence rp and r  are possibly
functions of z. The relevant flute-averaged eigenequation for the displacement

is given by Eq. (47). With p, Ps Py ¢$’ and Mw constant in the two regions,

Eq. (47) simplifies to

d d _ .
a—lp(AwWX)-W—X—O ; (69)

and the derivative 90X/3Y is discontinuous at wp.
With boundary conditions X = 0 at ww’ regularity at ¢y = 0, and continuity

at y = wp the solution of Eq. (69) 1is

v , ¥ < ‘JJP
X = (70)
m/2 -m/2
ay + by ) v > ¢p
_ m,  m -1 _ m . .
where a = - (¢w/¢p - 1) ", and b = -a V- The eigenvalue w is obtained by

integrating Eq. (47) with respect to Y across wp and using the jump in

0X/0y deduced from Eq. (70). We obtain the dispersion relation

A: t Bw + € =0 (71)
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where

d +1
ol =
(d — 1) er; * e (72a)
B = (m - I 24 7
(m l)f‘I mooT g (72b)
11 2 2d 1t
7 = - -mt =S - 2
€ =mn(m - 1) g'l m S8 C M| (72¢)

il

e, f, g, and H were defined in Eq. (48), and d wz/wz.

A number of useful conclusions can be drawn immediately. Consider first
the limit of a vacuum separating the inner plasma region from the conducting
wall. Then A + <p/B>I, B +(1-m) <p(Q1 + ﬁz)/B>[. and ¢ > m(m-1)

<09192/B> -2m <k67B>I. Because of the low-beta assumption, the dispersion

1
relation is independent of the wall position as long as the plasma is
separated by a vacuum from the wall. For m=l, the FLR modifications vanish,
the displacement { = X/rB is rigid (constant) within the plasma, and the
mode is a simple interchange. For m > 1, the gyroscopic effects coming
through 98 are always stabilizing; and the quasi-elastic term in @ 1is also
stabilizing if <leﬂ2/B> < 0. The effect >f FLR on the discriminant of
Eq. (71) increases as m? for m >> 1.

A new phenomenon emerges when there is plasma in the outer region and the
conducting wall is nearby. With d »> 1+ and (d—l)‘-1 >> 1, there is a
sharp enhancement of the plasma inertia in.« and of the gyroscopic effect in
B, both of which are always stabilizing. There is also a strong enhancement
of the quasi-elastic effects in ¥, which are stabilizing if <leﬂz/B>II < 0.

Additional stabilization is afforded by a nearby :onducting wall when the
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plasma has finite pressure because of the bending of field lines trapped

. 31-34

between the plasma and the conducting wall.
Consider the evaluation of Eq. (71) when there is a plasma occupying

Region I which is surrounded by a vacuum and then a conducting wall. The

eigenfrequency resulting from Eqs. (71) and (72) is

w = Sﬂ%%lf s é’[(m—l)%g + (m-1) eg -~ mEHll/z s (73)

where all quantities are evaluated in the plasma, region I. With ExB rotation
and no FLR, then § = Qp, £+ <2p§2/B>, and g > - <p92/B>. Based on the energy
theorem, we anticipate the possibility of instability because @ < 0. The
first term under the square root in (73) is the destabilizing shear term
analyzed earlier. The next term is a destabilizing Rayleigh-Taylor rotational
term for m > l: the rotation produces a centrifugal force equivalent to a
gravitational force directed ocutward. The third term under the square root is
the pressure-weighted curvature term and is destabilizing for negative average
curvature. The rotational effects disappear for the m=1 mode, which is a
rigid displacement of the plasma.

For the opposite limit of a vacuum region on axis surrounded by a uniform
plasma annulus with density, pressure, rotation, and FLR that are constant in

radius, the dispersion relation deduced from Eqs. (71) and (72) is

£ 2

2e (74)

w = (m+l) + % [(m+1)?9 - (m+1) eg + meH]l/

with all quantities evaluated in the plasma, Region II, and ws >> wg.
With rotation and no FLR, the outward directed centrifugal force is stabilizing
because the effective gravity and density gradient are parallel causing the

second term under the square root, to be positive. Similarly, negative
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average curvature is now stabilizing because the plasma is hollow. Because
the displacement is not rigid for any value of m, rotational stabilization is
effective for all m.

The grossest features of radial shear in the ExB rotation can be
qualitatively illustrated in the sharp-boundary model by allowing a
pressureless non-rotating plasma with finite density to occupy what had been
the vacuum regions in the two model problems immediately preceding. The only
change in the dispersion relations Eqs. (73) and (74) is that the plasma
inertia appearing in the denominators of both expressions becomes e(I) + e(I1)

m, m .
for ww/wp >> 1. Hence, radial shear 1in QF is stabilizing or destabilizing
depending on whether the QE profile is hollow (inverted) or decreasing
with radius, respectively. Qualitatively similar results have been obtained
in an earlier detailed study that considered low-m rotational stability of a
low-beta, infinitely long cylindrical plasma with Gaussian density profile and

. 38 : .
no magnetic curvature effects, From the analytical results of this
subsection we see that radial potential profile c<ontrol, which is important in
reducing radial transport in tandem mirrors with quadrupole plugs, can also
improve the MHD stability of a tandem mirror.

In the course of our numerical studies confirming the analytical results
of this section, a spurious numerical instabilitv was uncovered. When the
plasma equilibrium is uniform in both Y and z so that the stability equation
has constant coefficients throughout, the iterat:.ve partial differential
equations for Re £ and Im £ become singular in thteir hignest | derivatives
. 2 2 . . ) S .
if pw- - m % = 0. This leads to a numerical instability 1if both @ < O

_ _ 1/. . . e
and Im w = (-m %/p) exceeds the growth rates ot all physical instabilities
present. However, we have found that the conditions leading to this numerical

instability are easily avoided in applications t¢ physical systems.
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E. Bessel Solution

In this subsection, we consider a simple limiting case in which the
low-beta eigenequation is explicitly solvable in terms of Bessel functions.
Let us assume that the distribution function (in general, a function of
magnetic moment |, energy €, and |, as well as of the species index s)

depends on Y only through a factor exp(-GY), where G is a constant (the

same for all species). We then have

(p,M,p) = (pO,Mo,p_o) exp(-Gy) (75)

where p_, M_, and E; are functions only of z.
Recall now that ¢ is expressible in general as ¢1(¢) + ¢2(¢,z),

where ¢2 is determined by the charge neutrality condition and ¢1 is essentially

arbitrary. (Within the framework of the collisionless equilibrium theory, it

is necessary to prescribe the function ¢1, as one of the side conditions

needed in order to specify the equilibrium uniquely.la) In the present

case, the factor exp (-Gy) cancels out of the charge-neutrality condition,

with the result that ¢2 is independent of Y, and ¢

b

¢1¢, i.e., to a function only of Y. We now make the further assumption

reduces to

{(without any inconsistency, since ¢1 is essentially arbitrary) that ¢¢

is independent of ¥ as well as z. We assume, 1n short, W) = Qe’ where

®y

Qe = const.

It follows now that

(e,f,g) = (eo, fo, go) exp(~Gy) (76)
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where e, f , and g, are constants. Explicitly, we obtain

e, = <p /B> , (77a)
f = 2Qe s (77b)
) 0
2
o (L 2
8, ~ (16 27) e (77¢)
where
Q=9 - % | (77d)
e 4
I =G <M>/e (77e)
o' "o

We also have H = HO exp(- ¢), where HO is given by the same formula Eq. (52)

as H itself, except that P, replaces p.

The eigenequation now reduces to

2
2 1 2.2 m
(o -1—6m2) [(2u;xw)w—2—‘px-2¢cxw]
-G(m292+2nﬂc+1—ém222+m2 TY X=0 , (78)

where T = H /e and
o o

o= w - m . (79)
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The angular frequency designated as § is essentially the "canonical" angular
velocity of Ref. 13, and 0 is simply the mode angular frequency w transformed
to a rotating reference frame of angular velocity §.

2 .
Consider now the following limit: G+ 0, but with § and Ho both going to

. . -1 ] .
infinity as G ~. The eigenequation now reduces to

2
2 m
L = 80
(2\|)xw)¢+(»< Zw)x o , (80)
where
2 2

02 - m2§:2/16 -

But this is simply Bessel's equation of order m (after a trivial change of
variable). The explicit solution (with the boundary condition X + O at
V=0 is x = 1 (2.

Let us assume for simplicity a rigid boundary at ¢ = Y, at which
the boundary condition X = 0 will obtain. The eigenfrequencies are then given
by the formula

2m2
o' = m’y’ - Yzww s’ + 1, (82)

mn

where Ymn denotes the »th zero by J,+- The worst case is the lowest radial

mode, m=1, n=1, Y11 = 3.8317, resulting in the stability criterion

32 ¢

Y —te@? e . (83)

Y11
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The term on the left represents the stabilizing FLR effect (proportional to
<M0>2, or 22), and the destabilizing terms on the right are, respectively, the
result of centrifual drive 6~92) and of had curvature (~H0). This stability
criterion is identical to that obtained from energy theorem considerations for
an JW(Z) calculated in a frame rotating at rate 3.13

Figures 7 and 8 exhibit results of this analytical calculation and those
obtained with FLORA. FLORA reproduces the frequencies (Fig. 7) calculated in
Eq. (82) and the corresponding eigenfunctions (Fig. 8) to within a few percent
for 1 <m < 6, QAt = 0.1 and 40 radial grid points. The discrepancy of the
eigenfrequencies near marginal stability is due to finite-differencing errors.
There is also a small systematic discrepancy especially noticeable in Reuw,
because Iwwdp/dwl = 0.05 po in the series of FLORA results displayed so
that FLORA was not solving Bessel's equation (G is finite). The eigenfunctions
exhibited in Fig. 8 were obtained with dp/dy artificially suppressed
except in the curvature-drive term where dp/dy * const., and the
correspondence of the FLORA results with the analytical calculation is better
than 1% over most of the domain. The relative accuracy of FLORA's
eigenfunctions appears to degrade only in the neighborhood of the endpoints

(where both the numerical and the analytical solutions vanish).

V. TANDEM MIRROR EQUILIBRIA

In this section we present the procedure used in FLORA to calculate
finite-pressure paraxial equilibria. The perpendicular and parallel force
balance relations were given earlier in Sec. I1.A along with a number of
constraints. We have opted for simple analytical models where possible. Let
us say that both pressure components are separable functions of Yy and B:

P, l(IJJ,B) = N(y) b” (B), where

sl
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ﬁ“(B) = a + bB + cB2 + dB* . (84)

The perpendicular pressure is deduced from parallel pressure balance, Eq. (7)

summed over species,

o>

R 2 4
pl(B) = - B %E (E—) = a - ch - 3dB . (85)

The pressures p and p share the same | profiles denoted as N(y), which
are composites of simple polynomials, Gaussians, and hyperbolic functions.
Except for the purpose of studying sharp-boundary problems, the pressure
profiles are spliced together smoothly so that they are twice-continuously
differentiable with respect to Y and z. This ensures that equilibrium
coefficients required in the stability equation are well behaved. Additional
details are contained in the FLORA user's guide and source code listing.

The self-consistent magnetic field is calculated from the perpendicular

pressure balance Eq. (2):

v
=, (86)

where Bv(z) is the axial magnetic field on axis due to external coils
located outside the maximum | surface. The field due to the extermal coils
is assumed to have had sufficient time to penetrate conducting walls
surrounding the plasma. The computation of Bv(z) can be performed either
numerically or analytically by superposition of simple current elements, e.g.,
finite-length solenoids. For a solenoid, the axial field is given by

z, +A-z z, - A -z

I
B(z) = = - . (87)
2 [32 +(z, + A - 2)2]1/2 2
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where I is the current per unit length, A is the axial half-width of the
solenoid, z, is the axial position of the solenoid center, and a is its
radius. It has been convenient to express I for each solenoid in terms of the
local vacuum magnetic field maxima. By varying parameters we have been able

to accurately reproduce numerically calculated magnetic fields for quite

complicated coil structures.

. . . . 2
Equations (85) and (86) together yield a quadratic equation for B .

Taking the physical solution (there is only one positive root), we obtain
r(P,z) (i.e., the explicit flux line radius) from

9 (7
2= 2f ' /BO,z) (88)
0

which is calculated numerically in general with z as a parameter. The
curvature, k = r_ ,» can be computed by differentiation under the integral
sign (carried out analytically), followed by numerical evaluation of the

integral.
An example of a model tandem mirror equilibrium is displayed in Fig. 9.

This particular configuration has a choke magnetic field of 8 T and magnetic

. ) . . 2
field peaks of 4 T in the anchor cell, wherein hot electrons with Ble = 2ple/Bv

= 0.1 are magnetically confined. There is a central cell plasma with density
1012 cm_3 and Bl = 0.2 relative to the central cell vacuum magnetic field.
The B values quoted will always be relative to the minimum of the vacuum
magnetic field in the respective cell. There is a sloshing-ion plasma 1in the

. . 12 .
anchor with peak density 10 cm and peak Bl = 0.2 relative to the vacuum

magnetic field in the anchor midplane. The detailed profile shapes and
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parameters for this and other equilibria displayed subsequently in the paper
are available in FLORA data files on the Magnetic Fusion Energy Computer
Center Network.

We have constructed multiple-cell tandem mirror equilibria at finite
plasma pressure in FLORA using this procedure. Parameters are selected to
satisfy the constraints of positive p, and P validity of the paraxial
approximation, firehose stability Q > 0, and the mirror mode condition (10).
Attainable beta values, though fairly large (of order unity), are eventually
limited by failure of the paraxial approximation or the mirror mode condition.
The microstability condition (12) is often satisfied, but this is not a
requirement.

The remaining equilibrium quantities required as coefficients in the
stability equation are the FLR coefficients -#’and 2 defined in Egqs. (15) and
(16). These generally depend on the moments of the distribution functions and
the electrostatic potential ¢. One can postulate distribution functions and
then calculate the potential from the quasi-neutrality condition up to an

arbitrary additive function of ¢.14

VI. MHD STABILITY WITH HOT ELECTRONS

Hot electrons created by electron cyclotron heating or stacked in Astron
, 2
rings can depress the equilibrium magnetic field and provide a stabilizing
magnetic well for a finite-beta core plasma. This MHD stabilization scheme

39,40

has been analyzed theoretically, but confirmation in experiments has

been difficult to achieve. The same principle is being applied to several
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existing and proposed tandem mirror experiments (STM, TARA, and AXIM) with the
goal of achieving an MHD-stable axisymmetric tandem mirror. A schematic of
the concept is presented in Fig. 10. Hot electrons are mirror trapped in
axisymmetric mirror cells at the ends of the tandem. The inside mirror peak
may be a high-field magnetic choke coil, and a thermal barrier can be
established by additional electron cyclotron heating in another mirror

cell.40 In this section we address the MHD stability of a simple tandem
mirror equilibrium with hot electrons.

The well-digging effect of hot electrons can provide MHD stability to a
core plasma that would otherwise be interchange unstable. When the drift
frequency of the hot electrons much exceeds the characteristic MHD frequencies
in the core plasma, the hot electrons become somewhat rigid in their response

to MHD perturbations.25’39’40

Solution of the Vlasov-Maxwell equations for
compressible electromagnetic interchange modes indicates that the
rigid-response approximation for the energetic electrons 1s qualitatively
accurate, but stability 1s overestimated at larger values of the core

39,40

beta The rigid-response model was adopted for the high-m MHD-fluid

stability analysis in Ref. 25.

We also adopt a rigid-response model, and we limit investigation to
incompressible perturbations. Furthermore, the core beta in the plug is
assumed to satisfy Bp < G(er/Rc), where rp is the plasma radius and RC is
the radius of curvature. Above this Bp the Nelson-Lee-Van Dam instability

threshold is exceeded,39’40

and the approximation of hot rigid electrons
fails. Following this derivation is a presentation of results from FLORA

illustrating that hot rigid electrons can stabilize MHD modes of arbitrary m

number. Our two-dimensional study for general m including FLR effects differs
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in scope from Ref. 25 in which a one-dimensional high-m balloon equation in z
was solved in the absence of FLR effects.
The prescription for incorporating rigid electrons has been given

25,42-44

previously. A separation is made between the plasma current and

pressure, and the rigid-electron current and pressure. In equilibrium,
(89)

and

( ) =0 . (90)

+ P
=p

J
5
Consider a low-beta, electrostatic (6B = 0), incompressible MHD

perturbation. With hot non-responding electrons, the perturbed equation of

motion 1s
-p=—408v+68J xB-VeSP =0 , (91)
p 2 =p

where 6§ indicates a perturbation quantity and the remaining quantities are
evaluated at their equilibrium values. We introduce the displacement &,

assumed to be transverse and incompressible, and the velocity perturbation

§v = dg/dt. It follows that én = - £ -Vn and 6p = -£*VP . From Eq. (91)
K
683 =[-p— £+ g-vp b/B . (92
I (odtzé_ é_p)x/ )

The quasineutrality condition is V'Sip = 0 (we assume that the hot-electron

beta is finite, but that its density is negligible so that charge uncovering
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that could be caused by the plasma cannot occur), which we integrate along the

field line with insulating boundary conditions B'dgp = ( at the ends.

Hence,

= g& . =
.}r—— Ve(8J ol b+ Ggpl) —./ﬁB v Ggpi 0

or

b,
== Ve . 5
f [(pd £+ £ R) x 7

e2
2 J
. ag ; d Be o
=1mf Q—E—E +p) =T p ]$=0 . (93)
rBZ dt i lp B odr lp

In obtaining Eq. (93) we have made use of m >> 1, Vx(b/B) = 2bx(b*Vb)/B

2 A
- (J_ +J)/B" ~ 2bx(b*Vb)/B - J /B2 for low plasma beta, k = 1_,
2 T e e zz

Ao L[] =A- . - L = -(\. Y ] - AoAb
beVxV d_g_p b*Vx [vsplp + Ve (8p, (Spl)p bb] beVx{[-£-V(p, pl)p] beVb},

and the paraxial approximation. In the archor, where JBe >> JGp’ Jee = -3B/3r;
and substitution of this in the right side of Eq (93) illustrates explicitly
the diamagnetic well-digging by the hot electrons. The result obtained in

Eq. (93) agrees with the analyses of Refs. 25, 47, and 44, which were valid
for arbitrary m and finite beta consistent with ¢he Nelson-Lee-Van Dam

condition. Thus, the change in the general stability equation (28) to

accommodate hot rigid electrons 1is

2
m 9 a
+ —2 ———a —_\IJ ] X , (94)

2k 0
(o * ) X > [ g 5ptp * Py

vl
&l

|
3
3|

P

where electron force balance in the plug determines Jee = raple/aw.
Equation (29) and the subsequently derived stability conditions are modified

similarly.
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An illustration of the stabilizing influence of hot electrons is given by
the series of numerical studies in FLORA displayed in Figs. 11 and 12. Where
the hot electron pressure profile decreases with respect to {, the self-
consistent magnetic field increases and can stabilize a core plasma whose

pressure profile is also decreasing, i.e., (3p

le/aw)(aplp/aw) >0 is
stabilizing. Where aple/aw > 0 and k < 0, the core plasma must be flat

or hollow to ensure MHD stability on every field line. The results from FLORA
shown in Figs. 11 and 12 demonstrate that complete MHD stabilization of a
tandem mirror on every field line can be achieved with proper tailoring of the
electron and core pressure profiles without recourse to FLR or a nearby
conducting wall. Table I gives the peak beta values of the plasma in the
central cell and plug, and the hot electron beta in the plug for representative
stable and unstable cases. When the core plasma is unstable at finite
pressure, the eigenmode balloons in the region that is most unstable locally
as a result of bad curvature or rotation (Fig. l2e). An important aspect of
hot-electron stabilization is that while the electrons dig a stabilizing well
for the core plasma in the plug, they also increase the bad curvature in the
midplane of the plug. Furthermore, maintaining consistency with the paraxial
approximation may become difficult when the hot-electron beta becomes large
over a limited axial extent.

A comprehensive study of axisymmetric tandem mirror stability at low
frequency with hot rigid electrons, FLR effects, and a nearby conducting wall
has been made with FLORA and reported in Ref. 4l1. The addition of FLR and a
nearby conducting wall assist in stabilization and allow high central cell

betas. A detailed description will be given elsewhere.
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VII. COLD PLASMA HALO STABILIZATION

In this section the stabilizing influence of a cold plasma surrounding a
hot plasma core is examined analytically and numerically. The stabilization
mechanism is line-tying of the cold plasma to a conducting end wall where § = 0,
which 1s communicated axially in the cold plasma along the field lines because
of their resistance to bending at low beta and then radially inward to the hot
plasma by FLR effects which tend to make the displacement rigid. Line tying
at the end walls in the cold plasma depends on good electrical conduction
between the halo and the end wa11.45—47 This may require an electron-
emitting end wall intersecting the field lines holding the halo. The hot
plasma core is assumed to be well insulated from the end wall so that a
free-end boundary condition is appropriate 3£/3z = 0. The following analysis
and computations address the influence of line tying on MHD stability.

The extension to general m of an m=1 analytical stability analysis48 is
presented here. The model for this analytical calculation is simplified and
artificial, but illustrates the physics of stabilization by a conducting wall
or a cold plasma halo. Consider a low-beta plasma with pressures and mass
density whose radial profiles are Gaussians, P, + Py = P, exp(-rz/ri) and
p =0, exp(—rz/rﬁ), and with bad curvature k = —r/Ri where RC is the
radius of curvature. Assume further that all coefficients in the stability
equation and the transverse displacement £ are independent of z, so that

Eq. (29) becomes

1 9 39 2 2,4 2 ]
iy (pTr or €) + (1 - m") pTE + rw & el 2m k § 3 P 0 . (95)
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In an actual physical system, B and r must have some z dependence in order for
k to be finite and negative. However, the z dependences can be quite weak, so
that Eq. (95) is a reasonable approximation. The characteristic frequencies
appearing in T are assumed to be constants.

We next assume that a cold plasma halo establishes the boundary condition

£ =0 at z = #tL for r > Ty > rp. Because of the low beta, the eigenmodes are

flutes and E(r,z) = 0 for r > ¢ For r < r , d£/3z = 0 at z = + L and hence for

h* h?
all z at low beta, which allows finite-amplitude eigenmodes in the hot-plasma

. 2
case. With A = r /ré and n = A exp(-A/2) &, Eq. (95) becomes

Whittaker's equation,b’38

+§+———)n=0 (963)

with Whittaker's function solutions

l +m

(1+m)/2
N 2

n=»=M (n) =

exp(-n/2) M( - K, 1 +m, n) (96b)

iK,m/2

2 2.2
where kK = 1 -(w” + mT7)/2T, Fz = —kpo/rpo, and M(1/2 + m/2 - k, 1+m, n) is

Kummer's function. The eigenvalue condition is determined by line tying in

the halo so that n = 0 for r = T Hence,
2,2
M(1/2 + m/2 -k, 1 +m, rh/rp) =0 , (97)
from which w is obtained.
. B 2 2.2
For the special case of Q, = —91 so that T = @~ - m Ql, Eq. (97) leads

to the dispersion relation
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2
2 _ mn 2 .2
w -————T'(m*ﬂl ro ., (98)

m*+

where my = 2(k-1) and m, for m = 1,2, and 3 is plotted as a function of
rﬁ/rs in Fig. 13 as calculated from Eq. (97) and a numerical evaluation of
Whittaker's function.49 Equation (98) indicates complete stabilization by
the combination of FLR and halo effects when m*ﬂf > Fz. The eigenmode is not
radially rigid for any m, and the stabilization increases for decreasing
rh/rp and increasing Ql(Fig. 14). As m increases so does m,, which further
improves stability in Eq. (98). Thus, m = 1 is the most difficult mode to
stabilize.

We have used FLORA to confirm these analytical results, to examine the

influence of a cold plasma halo extending from r, to a wall at a much larger

h
radius, and to investigate the effect of a weak z variation of the equilibrium
(Fig. 14). The results from FLORA prove that the simple radial analytical
model problem correctly predicts all the qualitative features of having an
actual halo in a system with a weak z variation. There is fairly good quanti-
tative agreement between the model calculation and FLORA on growth rates and
eigenfunctions, although FLORA indicates growth rates that are systematically
higher by 5% when there is a halo and weak z variation.

For 92 F - Ql, the dispersion relation acquires an FLR gyroscopic term
that is linear in w and is always stabilizing. The extension of Eq. (98) to
this case 1is

mm, (@) + ) m 1/2

= 2 2 2
W 2(1 + m*) t 2(1 + m*) [m*(Ql + 92) 4(1 + m*)(m*ﬂlﬂz + 7)1, (99)
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and m, remains determined by Eq. (97) and is plotted in Fig. 13 for m = 1,2,
and 3. Numerical solution of the stability equation for spatially varying
Ql and Qz or for more general pressure and density profiles is conveniently

obtained in FLORA.

VIII. DISCUSSION

This paper has addressed aspects of the low-frequency stability of
axisymmetric systems in the paraxial limit including the effects of finite
Larmor radius. The Lagrangian formulation of Ref. 12-14 has been used to
derive the equation of motion for the linear incompressible transverse
displacement of the perturbed field lines. This formulation is based on the
solution of the Vlasov-Maxwell equations expanded in two small parameters, the
inverse aspect ratio R/L << 1 and the ratio of the Larmor radius to the
radial scale length a/R << 1. The stability equation derived in Sec. II
describes MHD modes with frequencies much less than the cyclotron frequency.
These modes are destabilized by bad curvature of the magnetic field lines or
by rotation. We have also derived a statement of energy conservation for
linear perturbations from which a sufficient condition for stability resulted.

We have solved a two-dimensional equation in flux coordinates { and z
for arbitrary azimuthal mode number m to assess the linear stability of
axisymmetric equilibria. Analytical solutions for eigenfrequencies and
eigenmodes are obtained in a number of special cases in Secs. IV, VI, and
VII. 1In more general circumstances, the stability equation is integrated
numerically as an initial-value problem with the FLORA computer code

introduced here. The coefficients in the stability equation depend on the
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equilibrium profiles for the magnetic field, mass density, pressures, FLR
coefficients, and ambipolar electric potential. These in turn depend on the
distribution functions and a straightforward calculation of axisymmetric
paraxial magnetostatic equilibrium at finite beta (Secs. II and V).

The analytical calculations presented in Secs. IV and VII illustrate many
of the important physical characteristics of the stability equation and
provide a basis of comparison for numerical integrations in FLORA. The basic
instability drive mechanisms, unfavorable magnetic curvature and rotation, are
emphasized in these examples. The stabilizing influences of gyroscopic
(X'# 0) and quasi-elastic (if % > 0) effects are demonstrated. The
stabilizing effects of a nearby lateral conducting wall and a cold-plasma halo
that has good electrical contact with a conducting end wall are analyzed in
Secs. IV and VII for low plasma beta.

The results of numerical calculations performed with FLORA have agreed
with the analytical calculations and allowed us to address a more general
class of equilibria where analytical solution of the stability equation is not
always possible. The calculation of multiple-cell axisymmetric tandem mirror
equilibria in FLORA is described in Sec. V. The stabilizing influence of hot
"rigid" electrons is studied in Sec. VI, and the possibility of complete
stabilization of a tandem mirror configuration to low-frequency incompressible
MHD modes is demonstrated. The numerical examples reported here are intended
to be illustrative; detailed parameter studies with FLORA will be described
elsewhere.

In evaluating the implications for experiments and reactor designs of our
stability calculations, it is important to remember their many limitatilons.

Only paraxial systems have been analyzed. Weak FLR effects are incorporated,
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but there are no resonant particle effects. The low-frequency MHD modes
analyzed are quasi-neutral and strictly incompressible because of the paraxial
approximation. Compressional modes have higher frequencies in paraxial
systems and are particularly important when considering the stability of
finite-beta systems with hot non-rigid electrons.25’39’40’50
In the future, we will report on detailed stability studies of
axisymmetric tandem mirror reactor designs and experiments. Preliminary
results from FLORA on the MHD stability of an axisymmetric tandem mirror
reactor design with hot electrons appear in Ref. 41. A study of
Rayleigh-Taylor rotational stability including radial shear is in
progress.36 We have formulated the equation of motion describing the
coupling of incompressible hot-electron precessional modes with shear Alfven
waves and the resulting modification of FLORA in order to further study the
stability of hot-electron stabilized tandems.51 Finally, FLORA and
supporting documentation are now available through the National Magnetic

Fusion Computer Center in a public file.
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Table I. Plasma and hot—-electron beta values
for stable and unstable cases with no FLR.

e-ring plug cent
0.3 0.1 0.1 Stable
0.3 0.25 0.77 Stable

0.3 0.31 0.97 Unstable
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Figure 2.

Figure 3.
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FIGURE CAPTIONS

Model two-cell axisymmetric tandem mirror equilibrium profiles as
functions of y and z for a plasma destabilized by bad magnetic
curvature and axially sheared ExB rotation: (a) perpendicular
pressure, (b) mass density am, . and (z) axially sheared rotation

-1 : .
frequency 2 = QE(QE =4 x 102 & or 1). The peak betas 1n

6). The magnetic

the central cell and plug were very small (Bl N 10
field amplitude was 0.1 T in the central cell, 1 T at the mirror

peaks, and 0.33 T in the midplane c¢f rhe plug.

Growth rates and radial eigenfunctions for high-m MHD modes driven
by curvature and rotation. (a) Infinite-m flute-averaged local MHD
growth rate square?2 as a function of the flux { theoretically
calculated (solid line) and observed in FLORA for m = 50 for the
equilibrium exhibited in Fig. ! with : = f, = 4 x 102 S-1 throughout.
(b) corresponding radial displacement { = X/rB as a function of flux

>

for m = 50 at various times in the FLUORA computation.

MHD growth rates y for modes driven by curvature and axially

sheared rotation as a function of (a) azimuthal mode number with

Qa = 0 and (b) relative shear in the anchor (a) and central cell (c),
1 - Qa/QC, for m = 50 and for plasma equilibria like that shown in
Fig. 1. The dotted line indicates the theoretically predicted growth

rate for infinite m.



Figure 4.

Figure 5.

Figure 6.
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Local growth rates and normal mode growth rates for curvature-
driven interchange modes in a low-beta system. (a) k2 =
-m2e2(1 + ?2/w2) where Yy is the local MHD growth rate

as a function of the magnetic flux coordinate and W is the
eigenfrequency. (b) The quantity 1 - wz/yi as a function

of 1/m obtained in FLORA (data points) and with WKBJ theory

(dashed line), where Yz is the maximum of ﬁg.

In (a~-d), growth rates Im %; and frequencies Re 8; for
rotational eigenmodes as functions of kvA/Q* for m = 1, the
lowest radial mode number n = 0, Bo = 0.75, and various
rotation speeds a = - Q/*. There was a conducting wall at 5
plasma radii from the axis. The radial eigenmode for =2 and
kvA/Q* = 0.335 as a function of radius is shown in (e). FLORA

results are indicated as data points (x). The curves were taken

from Ref. 17.

. W
In (a-d), growth rates Im o and frequencies Re 5; for

Q*
rotational eigenmodes as functions of kVA/Q* for m = 2, the lowest
radial mode number m = 0, BO = 0.75, and various o. The wall
radius was again at 5 plasma radii. The radial eigenmode for

a = 2 and kvA/Q* = 0.02 as a function of radius is shown in

(e). FLORA results (x) are superposed on the results of Ref. 17.



Figure 7.

Figure 8.

Figure 9.
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Frequencies and growth rates as a function of the magnitude of the
FLR stabilization for m = 1 flute modes in an axially uniform
plasma with pressures and density that are parabolic in radius.
For m =n =1 and IAp/p(o)l << 1, the dispersion relation

2 2.1/2
Eq. (82) can be written in the form . = & * i(8Q - vy ) / s

. : 2
where the FLR characteristic frequencies are Ql 2 = Q+ 80, v
H

represents the destabilizing terms due to rotation and an

artificially imposed gravity, and y/{; = 1.25.

Radial eigenfunctions for the contravariant component of the
displacement X as a function of radius for flute modes in an
axially uniform plasma for m = 1 and 4: (a) X vs. r, (b) X/Jl(r)
vs. r, (c) Xvs. r, and (d) X/Jh(r), where Jm(r) is the Bessel

function.

Model axisymmetric tandem-mirror equilibrium profiles calculated
in FLORA including stabilizing hot electrons. The peak central
cell and anchor perpendicular betas (summed over species) are 0.2,
and the hot-electron beta in the anchor cell is 0.1. There is no
ambipolar electric field in this example. (a) the magnetic field
B, (b) the curvature k = T, (c) the mass density p = om_;
(d) the perpendicular plasma pressure p, (e) the plasma parallel
pressure P and (f) the hot electron perpendicular pressure

P o @S functions of Y and z with nonuniform gridding.
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Figure 10. Schematic of pressure and magnetic field profiles as a function of
radius illustrating the stabilizing effect on the core plasma of

the diamagnetic well due to hot electroms.

Figure 11. Typical equilibrium profiles as a function of Y and z computed
in FLORA with nonuniform gridding: (a) the magnetic field B,
(b) plasma perpendicular pressure Pip and (¢) hot-electron
perpendicular pressure Ple with a distant conducting wall.
There was no ambipolar botential in these equilibria. The peak
plasma beta was Blp = 0.1 in both the plug and the central cell,

and the hot-electron peak beta in the anchor was Ble = 0.3.

Figure 12. Flute—averaged MHD growth rates squared as a function of flux and
the modulus of the radial displacement I{| at a reference
position as a function of time calculated in FLORA. Without hot
electrons, (a) ?2 vs. Y and (b) 1£i vs. time. With stabilizing hot
electrons, ;2 vs., ¢ and (d) Il vs. time. FLR was suppressed and
there was no ambipolar potential in these calculations. The peak
beta of the plasma in the central cell and the midplane of the
plug was Blp = 0.1 relative to the vacuum magnetic field and
the peak beta of the hot electrons was Bic = 0.3. In (e) we
display X vs. z for a ballooning unstable case with Blp = 0.2

in both the central cell and the anchor, and no electron ring.



-68-

Figure 13. Theoretical eigenvalue relation m, = 2{(x-1) as a function of

*

2, 2 2 2.2
rh/rp form = 1, 2, and 3, where ¢ = 1-(w” + m I')/2T,

T = (v - mﬂl) (w - mﬂz), T is the halo radius where £ = 0, and
rP is the e-folding radius for the Gaussian pressure and density

profiles.

Figure l4. Squared growth rates normalized to fz = -k pO/rp0 as functions of

(a) rfl/rp and (b) Qi/rz. (c) Radial displacement || as a

function of rz/rﬁ for low-beta m=1 flute modes calculated in FLORA

for Ql = -, = 0.62 ' and with Gaussian density and pressure

2

profiles. The solid lines in (a) and (b) are derived from the
analytical dispersion relation Eq. (98). Code results with a

conducting wall at r, and with no axial variation in (a) and (c)

are indicated by (x) and with weak axial variation in (b) by (o).

Data obtained with a halo beginning at r, and a conducting wall

b

at 1.3 r, are denoted with a .+) in {a) and (c).
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Cohen et al. - Figure 13
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